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Abstract. We consider periodic quantum Hamiltonians on the torus phase space (Harper-like
Hamiltonians). We calculate the topological Chern index which characterizes each spectral band
in the generic case. This calculation is made by a semiclassical approach with the use of quasi-
modes. As a result, the Chern index is equal to the homotopy of the path of these quasi-modes on
phase space as the Floquet parameterθ of the band is varied. It is quite interesting that the Chern
indices, defined as topological quantum numbers, can be expressed from simple properties of the
classical trajectories.

1. Introduction

Topological quantum numbers are different from quantum numbers based on symmetry
because they are insensitive to the imperfections of the systems in which they are observed. In
some sense, topological properties are robust properties. Topological quantum numbers have
become very important in recent years in condensed matter physics, where measurements of
voltage and electrical resistance can be conveniently expressed in terms of them.

If you consider, for example, a simple model of noninteracting electrons moving in a
two-dimensional (2D) bi-periodic potentialV (x, y) subject to a strong uniform perpendicular
magnetic fieldBz and a low electrical fieldEx , the Hall conductivityσxy of a given filled
Landau electronic band turns out to be proportional to an integerC [1]:

σxy = e2

h
C (1)

where C is the Chern index of the band, describing the topology of its fibre bundle
structure [2–6].

We investigate in this paper the value ofC as a function of the potentialV . In the limit
of high magnetic fieldBz, the above model is mapped onto the well known Harper model: the
potentialV is considered as a perturbation of the cyclotron motion, and the averaging method of
mechanics gives an effective Hamiltonian equal to the average ofV on the cyclotron circles. We
neglect the coupling between the Landau bands [7]. For a high magnetic field (hence for a small
cyclotron radius), this transformation gives an effective HamiltonianHeff(q, p) ∼ V (q, p),
which is bi-periodic in position and momentum (the phase space is a 2D torus), and an effective
Planck constantheff = hc/(eB). In this approximation, trajectories are the contours of
Heff ∼ V . Furthermore, the expression ofheff shows that the high magnetic field regime
corresponds to the semiclassical limit. This model will be the starting point of our study in the
next section. For the sake of simplicity, we will denote ¯heff by h̄ in what follows.

0305-4470/00/030531+25$30.00 © 2000 IOP Publishing Ltd 531



532 F Faure

We will restrict ourself to the case where 1/h = N is an integer (but this is not a strong
restriction as discussed in section 3.1). The spectrum of these Harper-like models then has a
finite band structure. To each bandn = 1→ N is associated a topological Chern indexCn.
In this paper, we calculate all these Chern indices in the semiclassical limitN → ∞, for a
generic HamiltonianH(q, p) on the torus.

The way we compute these topological indices is as follows. First, we use the fact that the
classical dynamics generated byH is integrable, to construct quasi-modes (the usual WKB
construction) in section 4. An eigenfunction|ϕn(θ1, θ2)〉 of Ĥ in bandn, depends on two
quantal parameters related to the periodicity conditions of the wavefunction on the torus. A
quasi-mode|ψ̃n(θ1, θ2)〉 is a quantum state localized on a trajectory which is very close to
|ϕn(θ1, θ2)〉 in the semiclassical limitN →∞, [8,9] (except when a tunnelling effect occurs).

Because of the tunnelling effect, the eigenfunction|ϕn(θ1, θ2)〉 jumps from one quasi-
mode to another one as(θ1, θ2) are varying and follows a closed path on the torus. By treating
correctly this tunnelling effect when it occurs, we obtain a good approximation of the bundle
of eigenfunctions|ϕn(θ1, θ2)〉 by quasi-modes|ψ̃n(θ1, θ2)〉, for every value of(θ1, θ2). This
gives us the principal result of this paper: the Chern indexCn is equal to the homotopy number
In of this path, on the torus, see equation (22). We obtain the Chern indices for the whole
range of the spectrum, and show that the noncontractible trajectories play a major role.

This result is based on properties presented in appendix B specifically for the computation
of the Chern indices. The analytical methods we use rest on properties of zeros of the Bargmann
representation (divisors of a holomorphic section). This appendix is self-contained, and general
results presented here could be useful for other purposes where topological Chern indices are
involved.

There is a constraint on the global spectrum [5,6,10]: i.e.,
∑

n Cn = +1. In section 5, we
give an explanation of this in terms of classical trajectories. It is shown that the noncontractible
trajectories on the torus are responsible for this constraint. This nontrivial total Chern number
is crucial for explanation of the Hall conductivity [1]. A natural question is then to determine
which bandsn have a nonzero Chern indexCn in the generic case? We answer this question
in section 7, where we explain how to compute the Chern indices of the whole spectrum, from
the classical Reeb graph.

Our approach is quite similar to that of Thoulesset al [1] where they treatedHε(q, p) =
cos(kq)+ε cos(p). The difference is that they treatedHε within a perturbation approximation
(with respect toε � 1), whereas we use a semiclassical approach. This enables us to treat
any generic HamiltonianH , and to describe new examples with nontrivialCn, different from
the Thoulesset al one.

Our results extend previous work of the author [11, 12], where the Chern indices were
calculated for a restricted range of the spectrum where the classical energy level6E =
{(q, p)/H(q, p) = E} consists of two or three contractible trajectories. In these cases, it
was shown thatCn is zero except for special configurations of the trajectories.

We give a numerical illustration of these results in section 6. It is shown that our results,
although derived in the semiclassical limitN → ∞, are also valid for quite smallN . This
illustrates the robustness of the topological properties. This numerical example is also used
throughout the paper to confirm our calculations.

In section 8, we complete this work by giving a new (but equivalent) derivation of the
interpretation of the Chern indexC for conductivity, more intuitive than the usual one based
on the Kubo formula [1]: we show here thatC is equal to the mean velocity of a wavepacket
on the torus, when(θ1, θ2) move adiabatically.
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2. Classical trajectories of a generic Hamiltonian

A generic classical Hamiltonian on the torus is a genericC∞ Morse functionH(q, p) periodic
in q ∈ R andp ∈ R, such that

H(q + 1, p) = H(q, p + 1) = H(q, p). (2)

In this section we investigate the topological properties of the trajectories ofH , and introduce
the Reeb graph [13], which summarizes them. The aim of this paper is to point out the rules
that give the Chern indices from the Reeb graph.

A trajectoryq(t), p(t) is a solution of the Hamilton equations of motion:

∂tq = ∂pH(q, p)
∂tp = −∂qH(q, p).

The trajectoriesq(t), p(t) evolve on the planeR2, but because of periodicity, they can be
considered as trajectories on the torusTqp, obtained by identifying the opposite sides of the
cell [0, 1]× [0, 1].

2.1. Properties on trajectories

Because of conservation of energy: d(H(q(t), p(t)))/dt = 0, each trajectory is included in an
energy level6E = {(q, p)/H(q, p) = E} of the Morse functionH . Moreover, the velocity
on such a trajectory is never zero, except when there is a critical point ofH where dH = 0.

We can easily obtain properties on the topology of
∑

E :

(1) For noncritical value ofE,6E is a closed one-dimensional curve, and each trajectory can
be identified with a connected component of6E . Therefore, each trajectory is a periodic
orbit, an oriented closed curve on the torusTqp. Its topology (homology) is characterized
by two integers(n1, n2) ∈ Z2 which are the degrees in theq andp directions ofq(t), p(t)
for t = 0→ T whereT is the period.(n1, n2) are relatively primes, except ifn1 = 0
(or n2 = 0) in which casen2 = −1, 0 or +1. A contractible trajectory has homology type
n1 = n2 = 0 and is clockwise or anticlockwise.

(2) A generic Hamiltonian has always noncontractible closed trajectories with type
(n1, n2) 6= (0, 0). In this case, every other closed trajectory is one of the three types
(n1, n2), (−n1,−n2) or (0, 0), and each of these three types exists. (Example: consider a
perturbation ofH(q, p) = cos(n2q − n1p).)

(3) For noncritical value ofE, each trajectory belongs locally to a family parametrized by
the energyE such that every trajectory has the same type. (The critical trajectories are
bifurcations between these families.)

For a given generic Hamiltonian, by a good choice of the lattice generators on the plane(q, p),
it is possible to deal with trajectories of types(0, 0) (0,+1) and(0,−1) only. We will adopt
this choice in what follows.

Concerning the critical points and the critical trajectories, there are three sorts of critical
points: a local minimum, a saddle point or a local maximum. From Euler’s formula ( [14]
p 29) we have #(mins) + #(maxs)− #(saddles) = 0. (The Euler characteristic of the torus is
0.)

2.2. Example

We will now give an example in order to illustrate these statements. This example will be used
throughout the paper.



534 F Faure

A

p

q

F

C

D
EB

E

q0

A

B

C

D

E

F

(0,0)

(0,0)

(0,0)

(0,+1)

(0,-1)

1

Figure 1. Trajectories and fixed points of Hamilto-
nian (3).

Figure 2. Reeb graph ofH : a schematic view of the types
of trajectories and bifurcations of Hamiltonian (3). Each
point of the dashed curve corresponds to a noncontractible
trajectory. They form a one-dimensional family. Each
point of a solid curve corresponds to a contractible
trajectory.

Consider the following Hamiltonian:

H(q, p) = H0(q, p) +H1(q, p)

H0(q, p) = cos(2πq) + 0.1 cos(2πp)
H1(q, p) = P [exp(−100(q − q0)

2 − 10(p − p0)
2)]

(3)

whereP is a functional operator which sums the function in each cell and makes it periodic:

P [f (q, p)] =
∑
i,j

f (q + i, p + j).

The trajectories generated byH are shown in figure 1, forq0 = 0.45,p0 = 0.45. There
is one minimum F, two maxima A, D, and three saddle points B, C, E.

The figure 2 gives a schematic view of the families of trajectories, with their bifurcations,
and homology types. It is called a ‘Reeb graph’R [13]. By definition, it is the topological
quotient spaceR = Tqp/F whereF = {6E}E is the set of energy levels. The topology of this
graph gives the relative location of the trajectories (theq variable here is only to indicate that
the dashed line can be obtained by a section at constantp in figure 1).

The Reeb graph can be drawn for any given generic Hamiltonian. This figure will
always have a similar appearance, with one transverse (dashed) curve (fromq = 0 to
q = 1) corresponding to the noncontractible trajectories, and branches from it (solid curves),
corresponding to contractible trajectories. Critical energies are at the extremities of these
branches. The final value of the Chern indices will be read more or less directly from this
graph in section 7.

3. The quantum Hamiltonian

In this section we introduce well known material that will be useful in what follows.
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3.1. The Hilbert spaceHP of the plane

The Hilbert space corresponding to the classical motion in the plane phase spaceT ∗(R) ∼= R2

is

HP = L2(R)

(the indexP will remind us that we deal with the plane phase-space).
We choose a symmetric quantization procedure: to the classical HamiltonianH(q, p)we

associate a self-adjoint operatorĤ in HP by

Ĥ =
∑

n1,n2∈Z2

1
2cn1,n2 exp(i2πn1q̂) exp(i2πn2p̂) + Hermitian conjugate

wherecn1n2 are the Fourier components of the functionH(q, p):

H(q, p) =
∑

n1,n2∈Z2

cn1,n2 exp(i2πn1q) exp(i2πn2p). (4)

SinceH is a real-valued function, the complex coefficientscn1n2 must satisfy

cn1,n2 = c̄−n1,−n2 ∈ C (n1, n2) ∈ Z2.

We denote bŷTQ(resp.T̂P ) the translation operator by one period:T̂Q translates byQ = 1
a wavefunctionψ(x) andT̂P translates its Fourier transform̂ψ(p) by P = 1:

T̂Qψ(x) = ψ(x − 1) (5)

T̂P ψ̂(p) = ψ̂(p − 1). (6)

We may rewrite equations (5) and (6) as

T̂Q = exp(−ip̂/h̄) T̂P = exp(iq̂/h̄).

Quantum mechanically speaking, the periodicity equation (2) reads

[Ĥ , T̂Q] = [Ĥ , T̂P ] = 0. (7)

To continue, we now have to assume that

[T̂Q, T̂P ] = 0. (8)

It is easy to prove that

T̂QT̂P = e−i/h̄T̂P T̂Q

hence (8) is fulfilled if and only if there exists an integerN such that

N = 1

h
∈ N∗ (9)

with h = 2πh̄. This hypothesis (9) can be regarded as a geometric quantization condition,
which states that there is an integer number of Planck cells in the phase space. The semiclassical
limit h̄→ 0 corresponds then to the limitN → +∞.

We now assume that hypothesis (9) is fulfilled.
Note that this hypothesis is not that restrictive, because any value ofh can be well

approximated by a rational numberh = m/N . It is then easy to check that [T̂mQ, T̂P ] = 0.
In this case, we have only then to consider the torus phase space [0, mQ[×|0, P [ instead of
[0,Q[×|0, P [.
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3.2. The Hilbert spaceHT (θ1, θ2) for the torus

According to the commutation relations (7) and (8), the Hilbert spaceL2(R) may be
decomposed as a direct sum of the eigenspaces of the translation operatorsT̂Q andT̂P :

HP = L2(R) =
∫ ∫

HT (θ1, θ2)
dθ1 dθ2

(2π)2

HT (θ1, θ2) = |ψ〉 such that

{
T̂Q|ψ〉 = exp(iθ1)|ψ〉
T̂P |ψ〉 = exp(iθ2)|ψ〉

(10)

with (θ1, θ2) ∈ [0, 2π [2 related to the periodicity of the wavefunction under translations by an
elementary cell. The space of the parameters(θ1, θ2) also has the topology of a torus, and will
be denoted byTθ .

The spaceHT (θ1, θ2) is not a subspace ofL2(R), the space of physical states; it is a space
of distributions in thex representation.

It is well known thatHT (θ1, θ2) is finite-dimensional [1]. To see that, let|ψ〉 ∈ HT (θ1, θ2).
The Fourier transform ofψ(x) is θ2-Floquet-periodic of periodP , soψ(x) is discrete, it is
a sum of Dirac distributions supported at points distant fromh = 1/N from each other.
Moreover,ψ(x) is θ1-periodic, henceψ is characterized by theN coefficients at theN Dirac
distributions supporting points in the intervalq ∈ [0, 1[.

Explicitly, a basis ofHT (Eθ) is given byN distribution denoted|j, Eθ〉:

|j, Eθ〉 ≡ ψj,Eθ (x) =
1√
N

∑
n1∈Z

exp(−in1θ1)δ(x − qj − n1)

j = 1, . . . , N with qj = 1

N

(
j +

θ2

2π

)
.

Eventually we get

dimCHT (θ1, θ2) = N.
Because of equation (7) the Hamiltonian̂H is block-diagonal with respect to the

decomposition equation (10). The operatorĤ acts onHT (θ1, θ2) as aN × N Hermitian
matrix, its spectrumσ(θ1, θ2) is made ofN eigenvalues andN corresponding eigenfunctions:

Ĥ |ϕn(θ1, θ2)〉 = En(θ1, θ2)|ϕn(θ1, θ2)〉 n = 1, . . . , N. (11)

For a given leveln, assuming thatEn(θ1, θ2) is never degenerate∀θ , the energy level
En(θ1, θ2) forms a band as(θ1, θ2) ∈ Tθ are varying, and the eigenvectors|ψn(θ1, θ2)〉 form a
2D surface in the quantum states’ space. But for a fixed(θ1, θ2), and anyλ ∈ C, λ|ψn(θ1, θ2)〉
is also an eigenvector. So for a fixed leveln, the family of eigenvectors form a complex-line-
bundle (of fibre∼= C 3 λ) in the projective space of the bundleHT → Tθ . The topology of this
line bundle is characterized by an integerCn ∈ Z, called the Chern index ([15], ch 1, p 139).

The definition of this topological Chern index is presented in section 5.1.

3.3. The Hilbert spaceHC(θ2) for the cylinder

In the following it will be useful to consider an intermediate decomposition ofHP in terms of
states periodic in momentum only:

HP = L2(R) =
∫
HC(θ2)

dθ2

2π

HC(θ2) = {|ψ〉 such thatT̂P |ψ〉 = exp(iθ2)|ψ〉}.
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Each state inHC(θ2) is a sum of Dirac distributions supported at pointsqn = 1
N
(n + θ2

2π ) with
n ∈ Z. The weights belongs tol2(Z).

Conversely:

HC(θ2) =
∫
HT (θ1, θ2) dθ1.

For eachθ2, the Hilbert spaceHC(θ2)is associated with the cylinder phase space denoted
Cqp, where(q, p) ∈ R2 is identified with(q, p + 1).

From a state|ψP 〉 ∈ HP = L2(R) of the plane, we can construct a state|ψC〉 ∈ HC(θ2)

of the cylinder by the operation

|ψC(θ2)〉 = Pθ2
|ψP 〉 =

+∞∑
n=−∞

exp(−inθ2)T
n
P |ψP 〉. (12)

From a state|ψC〉 ∈ HC(θ2) of the cylinder, we can construct a state|ψT (θ1, θ2)〉 ∈
HT (θ1, θ2) of the torus by the operation

|ψT (θ1, θ2)〉 = Pθ1
|ψC(θ2)〉 =

+∞∑
n=−∞

exp(−inθ1)T
n
Q|ψC(θ2)〉. (13)

4. The quasi-modes

4.1. Construction of a quasi-mode

The WKB method allows the construction of a quasi-mode for integrable dynamics (see [8]
and [9] p 235).

First, we recall the definition and general properties of quasi-modes.

Definition 1. If 0 is a given closed trajectory with energyE, a quasi-mode with errorε, is a
quantum state|ψ̃〉 localized near0, which satisfies

‖Ĥ |ψ̃〉 − Ẽ|ψ̃〉‖ = ε = o(h∞)

with h = 1/N going to zero, with(E − Ẽ) = o(h). The trajectory0 is called the support of
|ψ̃〉 and is denoted

0 = Supp(|ψ̃〉).
If we want to improve this errorε (and have an error exponentially small with respect to

h), we have to take into account the tunnelling effect between0, and0′ the ‘closest’ trajectory
0′ which has the same energyE [16–18]. We will return to this point later.

Proposition 1 ([9]). The interval[Ẽ − ε, Ẽ + ε] contains at least one eigenvalue ofĤ .
Let1α = [Ẽ − α, Ẽ + α]. If 1α contains only one eigenvalueE∗, with eigenvector|ϕ〉,

then (for normalized vectors)

∃β ∈ R ‖|ϕ〉 − eiβ |ψ̃〉‖ 6 ε

α
(14)

consequently,〈ϕ|ψ̃〉 6= 0 as soon asε 6 α/2 (for our purpose, we will say in that case, that
|ψ̃〉 is a ‘good approximation’ of|ϕ〉. This condition will be sufficient to construct a bundle of
quasi-modes with the same topology (the same Chern index).

Let us now give properties of quasi-modes specific to our problem. The explicit
construction of the quasi-modes can be found in [19–21].
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Figure 3. Quasi-mode localized on a trajectory0 of type
(0, 0) in cell (0, 0).

Figure 4. Quasi-mode localized on a trajectory0 of type
(0,+1), in cell (0) on the cylinder.

Contractible trajectories of type(0, 0). For a noncritical contractible trajectory0 of type
(0, 0), we first construct a quasi-mode on the plane,|ψ̃P 〉 ∈ HP . From the usual WKB
construction, this quasi-mode is localized on a single image of0, for example in the cell
(0, 0). See figure 3.

The energyẼ of this quasi-mode is given by the usual EBK condition:

S(Ẽ) = (k + 1/2)h + o(h) k ∈ Z
with S(Ẽ) the surface inclosed in the trajectory0.

A quasi-mode|ψ̃C(θ2)〉 on the cylinder can be deduced by equation (12). A quasi-mode
|ψ̃T (θ1, θ2)〉 on the torus can be constructed by equation (13). Note that the energy of these
quasi-modes̃E does not depend on(θ1, θ2).

Noncontractible trajectories of type(0,±1). If 0 is a noncritical trajectory with type
En = (0,±1), 0 is closed on the cylinderCqp and a quasi-mode|ψ̃C(θ2)〉 ∈ HC(θ2) can
be constructed for everyθ2.
|ψ̃C(θ2)〉 is localized on0, for example in cell 0: see figure 4.
The energyẼ of this quasi-mode is given by the condition

S(Ẽ) = (k − θ2/2π)h + o(h) k ∈ Z (15)

whereS(Ẽ) is the surface included in the unit cell, on the right of the trajectory0 (here oriented
by increasingp). We justify this condition in the next paragraph.

Note that the energỹE(θ2) as well as the support0(θ2) depend continuously onθ2.
A quasi-mode|ψ̃T (θ1, θ2)〉 on the torus can be deduced from|ψ̃C(θ2)〉 by equation (13).
For contractible and noncontractible trajectories, another quasi-mode with the same energy

can be constructed in the celln by

|ψ̃C,n(θ2)〉 = T nQ|ψ̃C(θ2)〉. (16)

From the WKB construction, the errorε of these quasi-modes is of o(h∞). The errorε
is due to tunnelling interaction with ‘the nearest quasi-mode of nearby energy’ (see the next
section).

Critical trajectories. If E0 is a critical energy, quasi-modes of energy nearE0 (in the interval
[E0 ±O(h)]) and localized near the critical trajectory, can be constructed. See [22–24].

Justification of quantization rule equation (15).When constructing a WKB quasi-mode
on a closed trajectory, the quantization rule comes from the phase matching. The phase
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Figure 6. The energy of the quasi-modes as a function
of θ2.

of the Fourier transform of the quasi-mode evolves like(− ∫ qdp) along the trajectory
q(t), p(t). For a trajectory0 of type (0,±1), the phase accumulated over a period is then
ϕ = S/h̄ = − ∫

0
qdp/h̄, whereS is the surface on the right of the trajectory0 (oriented by

increasing value ofp). The periodicity condition (10) requires thatϕ = θ2 [2π ]. This gives
the result (15).

4.2. The semiclassical spectrum without tunnelling corrections

We now investigate the global properties of the quasi-modes, with respect toθ2.
Consider fixed values of(θ1, θ2) ∈ Tθ . A WKB construction as previously described,

gives usN quasi-modes|ψ̃T (θ1, θ2)〉n with energiesẼn(θ1, θ2) over the whole energy range,
with n = 1→ N . This is a semiclassical approximationσsc(θ1, θ2) of the spectrumσ(θ1, θ2)

defined by equation (11). In fact, the construction was made onHC(θ2) and does not depend
onθ1, so we will note itσsc(θ2). (For contractible trajectories, it does not even depend onθ2.)

From the above construction, each quasi-mode|ψ̃C(θ2)〉 depends continuously onθ2. So
each quasi-mode belongs to a function9 : θ2 → |ψ̃C(θ2)〉 ∈ HC(θ2) which is periodic with
respect toθ2 (up to a phase), with a period22 = 2πm, with m ∈ N . (Otherwise, if the
function9 were not periodic, the spectrumσsc(θ2) would be infinite for a fixed value ofθ2.)
The corresponding energỹE(θ2) and the support0(θ2) are therefore also periodic with the
same periods.

If the trajectory0 is contractible (type(0, 0)), the energyẼ and the support0 are fixed.
They do not depend onθ2, and the period is22 = 2π .

For a noncontractible and noncritical trajectory (type(0,±1)), equation (15) tells that
the surfaceθ2 → S(θ2) on the right of0 is a strictly decreasing function because dS/dθ2 =
−h/2π . Thenθ2 → 0(θ2) moves from the left to the right on the set of noncontractible
trajectories on the cylinderCqp. This function reaches all the noncontractible trajectories, and
jumps over a connected component of contractible trajectories, via a critical point: see figure 5.

The surfaceS(θ2) is always a decreasing function, but the corresponding energyE(θ2)

decreases for trajectories of type(0,+1) and increases for type(0,−1), with the behaviour
shown in figure 2, if we plotE(θ2) for θ2 = 0→ 2πm. Figure 6 shows this functionE(θ2),
but folded in the intervalθ2 = 0→ 2π .

So we obtain the following proposition.

Proposition 2. The global spectrumθ2 → σsc(θ2) is the union ofone singlefunction
9nc : θ2 → |ψ̃nc(θ2)〉 ∈ HC(θ2), and many others(9c)i=1,...,Nc : θ2 → |ψ̃c(θ2)〉 ∈ HC(θ2)

such that: the support0nc of9nc is on the noncontractible trajectories. The period of9nc is
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Figure 7. Tunnelling effect between quasi-mode|ψ1n1〉 on
trajectory01, in cell n1, and quasi-modes|ψ2n2〉. We keep
only the dominant tunnelling interaction, here due to|ψ2n1〉.

22 = 2π ·Nnc, such thatNnc ·h ∼ Snc the surface occupied by the noncontractible trajectories.
In phase space, this supportθ2→ 0nc(θ2) is a closed cycle of homotopy 1 on the cylinderCqp.

The support0c of each function(9c)i is on a fixed contractible trajectory. Its period is
22 = 2π . The numberNc of these functions is such thatNc · h ∼ Sc the surface occupied by
the contractible trajectories. Note thatN = Nc +Nnc and1= Snc + Sc.

We now discuss the error of the spectrumσsc(θ2).
The error of each quasi-mode isε ∼ o(h∞). There are crossings in the spectrumσsc(θ2)

for discrete valuesθ∗2 , (caused by the noncontractible function whenẼnc(θ2) = Ẽnc(θ
′
2) or

Ẽnc(θ2) = Ẽc(θ
′
2)), see figure 6. For fixedθ2, away from a small neighbourhood of every

crossing valueθ∗2 , the spectrumσsc(θ2) hasN discrete eigenvalues and each eigenvalue is
isolated from the overs by an interval of lengthα � ε. We deduce from properties 1 that
the corresponding quasi-modes|ψ̃n(θ2)〉 (in fact their image inHT by the mappingPθ2), are a
good approximation of the actual eigenvectors|ϕn(θ1, θ2)〉, for anyθ1.

Let us remark that this semiclassical spectrumσsc(θ2) does not depend onθ1 and is thus
infinitely degenerate. This correspond to the invariance by the translation (16). This is not the
case in the actual spectrumσ(θ1, θ2) because of tunnelling effect.

Figure 9 shows the numerical spectrum of our exampleH(q, p), equation (3). From this,
we deduce what the semiclassical spectrum should look like: figure (10). Compare this with
the semiclassical spectrum, figure 6.

σsc(θ2) is not a good approximation of the actual spectrum near the crossing valuesθ∗2 .
To improve this, in the next section, we will take into account the tunnelling effect at each
crossing of energy. It causes a splitting of levels and we will recoverN well defined bands of
energy.

4.3. The semiclassical spectrum with tunnelling corrections

Consider a neighbourhoodU of a valueθ∗2 , where there is a crossing in the spectrumσsc(θ2)

between two energies:̃E1(θ
∗
2 ) = Ẽ2(θ

∗
2 ). See figure 6. As said before, this crossing is

caused by two noncontractible trajectories whenẼnc(θ2) = Ẽnc(θ ′2) or by one noncontractible
trajectory and one contractible one:̃Enc(θ2) = Ẽc. The crossing due to two contractible
trajectoriesẼc1 = Ẽc2 is not considered here, because it does not occur for a generic
HamiltonianH . See [11, 12] for results treating this nongeneric case. From equation (16),
these energies correspond to two families of quasi-modes:|ψ̃1C,n1〉, |ψ̃2C,n2〉 ∈ HC(θ2)

wheren1 ∈ Z, n2 ∈ Z. We suppose that these quasi-modes are localized, respectively, on two
trajectories01 and02, in cellsn1 andn2.

To improve the errorε of the quasi-mode say|ψ̃1C,n1〉, we have to take into account
the tunnelling interactions with other quasi-modes which have nearby energy|ψ̃jC,m〉 with
j = 1, 2 andm ∈ Z: see figure 7. This tunnelling interaction comes from nonvanishing
termsAj,m = 〈ψ̃1C,n1|Ĥ |ψ̃jC,m〉. We will treat the tunnelling effect at the leading order, by
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keeping only the dominant term. Consider first the termsA2,n2 with j = 2, andn2 ∈ Z.
We keep then2 term with greatest modulus:|A2,n2|. This term is o(h∞) and describes the
tunnelling interaction between|ψ̃1C,n1〉 and the ‘nearest’ quasi-mode|ψ̃2C,n2〉: see figure 7.
It is clear that the nearest quasi-mode isn2 = n1 or n2 = n1 ± 1, because other values ofn2

are in more distant cells. The other terms are o(h∞) with respect to the leading order term.
Consider now the termsA1,m with j = 1, andm ∈ Z. The dominant term is form = n1:
A1,n1 = 〈ψ̃1C,n1|Ĥ |ψ̃1C,n1〉 = Ẽ1(θ2). This is the energy of the quasi-mode. The other terms,
which describe tunnelling interaction between|ψ̃1C,n1〉 and its images|ψ̃1C,m〉 in other cells,
are o(h∞) with respect to|A2,n2| and so are negligible.

We have obtained that the dominant correction to the quasi-modes|ψ̃1C,n1〉 is described
by the 2× 2 tunnelling interaction matrix:

A(θ2) = (〈ψ̃iC,n1|Ĥ |ψ̃jC,n2〉)i,j =
(
Ẽ1(θ2) A2,n2(θ2)

A2,n2(θ2) Ẽ2(θ2)

)
where|ψ̃2C,n2〉 is the ‘nearest’ quasi-mode to|ψ̃1C,n1〉, n2 = n1 or n2 = n1 ± 1, and|A2,n2|
is o(h∞).

By diagonalizing the matrixA, we obtain two quasi-modes|ψ̃C+(θ2)〉 and |ψ̃C−(θ2)〉∈
HC(θ2) expressed as a linear superposition of|ψ̃1C,n1〉 and |ψ̃2C,n2〉, and two energies
E+(θ2)〉E−(θ2) with a gap|Ẽ+(θ2) − Ẽ−(θ2)| > |A2,n2|. But the error of the quasi-modes is
o(h∞)with respect to this gap. From property (1), we deduce that these quasi-modes|ψ̃C±(θ2)〉
(their image inHT , actually) are a good approximation of the eigenvectors|ϕi(θ1, θ2)〉, for any
θ1.

Now if we match these results with the outside of the neighbourhoodU of θ∗2 , we can
obtain a continuous dependence of|ψ̃C(θ2)〉 with respect toθ2 ∈ R.

Proposition 3. We have obtained quasi-modes|ψ̃C(θ2)〉 on the cylinder, which are a good
approximation of the spectrum equation (11) for anyθ1, θ2 in the sense that

〈ϕn(θ1, θ2)|ψ̃T (θ1, θ2)〉 6= 0 for every (θ1, θ2). (17)

We note this approximate spectrum byσsc,t (θ2) (the energies do not depend onθ1).
There is no more crossing in the energy levels, so we haveN well defined (semiclassical)

bands and corresponding quasi-modes|ψ̃C,n(θ2)〉, n = 1, . . . , N .
At each avoided crossing, we have obtained that the support of a quasi-mode jumps from

the trajectory01 in cell n1 (resp. 02 in n2) to the closest trajectory02 in cell n2 = n1 or
n2 = n1± 1 (resp.01 in n1) as in figure 7.

More globally, for each bandn, we derived a function for the support of the quasi-mode
|ψ̃C,n(θ2)〉 on the cylinderCqp:

SCn : θ2 ∈ R→ Supp(|ψC,n(θ2)〉) ⊂ Cqp. (18)

The imageST,n of SC,n on the torus is periodic forθ2 = 0→ 2π , andSC,n is a lifting
of ST,n on the cylinder. WithSC,n is associated a homotopic numberIn ∈ Z. Precisely,In is
given by

T
In
Q [Supp(|ψC,n(0)〉)] = [Supp(|ψC,n(2π)〉)]. (19)

In is simply the result of the jumps of the quasi-mode from celln1 to cell n1 + In as
θ2 = 0→ 2π .
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5. Chern indices

5.1. Definition

The eigenfunctions|ϕn(θ1, θ2)〉 of the bandn, equation (11), form a complex line fibre bundle
over the torus(θ1, θ2) ∈ Tθ . On a contractible subset ofU ⊂ Tθ we can choose the states
|ϕn(θ1, θ2)〉 such that they are normalized and that they form a (continuous) section overU .
Note that this is not possible over the whole torusTθ except if the bundle is trivial.

The global topology of this complex line bundle is characterized by its Chern index ([15]
p 139, [25]).

Because of the natural Hilbert scalar product onL2(R) = ∫ ∫ HT (θ1, θ2) dθ1 dθ2, which
induces the Berry (or Chern) connection [2,26], this topological number is explicitly given by
the integral of the Berry (or Chern) curvature ([1], [15] p 141):

Cn = i

2π

∫
Tθ

(〈∂θ1ϕn|∂θ2ϕn〉 − 〈∂θ2ϕn|∂θ1ϕn〉) dθ1 dθ2 (20)

obtained by summing over local open subsetsUi which coveredTθ , and sections chosen in
each of them.

This expression has been used intensively for our numerical calculations.
Moreover, it can be shown (see e.g. [6,10]) that

N∑
n=1

Cn = 1. (21)

There is an alternative expression forCn more suitable for our analytical calculations,
given in equation (27), (see [15] p 141). It is based on the motion of the zeros of the Bargmann
representation of the states|ϕn(θ1, θ2)〉.

5.2. Chern indices of the semiclassical bands

Our aim is to express the indexCn from the description of the classical dynamics.
Because of property (17), we deduce from theorem 1 (appendix B), that the band of the

semiclassical spectrumσsc,t have the same topology (and same Chern indices) as the actual
energy bands.

Our work consists now in computing the indexCn of the semiclassical bandn.
From theorem 6 (appendix B), the result is simply that

Cn = In (22)

whereIn defined by equation (19), is the homotopic number characterizing the path followed
by the support of the quasi-mode on the cylinder, whenθ2 is varying from 0 to 2π .

5.3. Global analysis of the Chern indices

In this section we calculate the sum of Chern indices for consecutive bands, in order to recover
the result, equation (21), within our semiclassical approach.

For each bandn = 1→ N , we have defined the cycle of the supportST,n on the torus
Tqp, equation (18). The last result, equation (22), is that the Chern indexCn = I (Sn) is the
homotopy number of this cycle (in theq direction). (We will now drop theT suffix in Sn.)

We decide to define the sum of two or more consecutive cyclesSn + Sn+1 + · · · + Sn+a

by removing the jumping due to tunnelling at the crossings between two consecutive cycles
Si and Si+1. This is illustrated in figure 8. The homotopy is thenI (Sn + · · · + Sn+a) =
I (Sn) + · · · + I (Sn+a), because the removing is a local operation.



Topological properties of quantum periodic Hamiltonians 543

E

θ
2

S

Sn

n+1

Γ1 Γ1

E

θ
2

S

Sn

n+1

q

p

q

p

A)

B)

1

2

Γ Γ2 2

1

2

Figure 8. The tunnelling effect generates a splitting
between energy levels (A), and a jump of quasi-modes
between trajectories (B). In order to calculate the sum∑N
n=1Cn, we have to remove this splitting, as well as this

jump.

∑N
n=1 Sn is then the support of the semiclassical spectrumσsc without tunnelling, and

from proposition (2), it is composed of one cycle0nc of homotopy 1 and many constant cycles
0c,i of homotopy 0. This gives

N∑
n=1

Cn =
N∑
n=1

I (Sn) = I
( N∑
n=1

Sn

)
= +1.

We recover equation (21). The total Chern index (+1) is interpreted here as the motion of
the noncontractible quasi-mode on the torus asθ2 is varying (in accordance with theorem 6,
appendix B).

6. Numerical illustration

We will illustrate the above results on the Hamiltonian equation (3). The numerical calculations
of the Chern indices have been done with the curvature formula equation (20). ForN = 11
levels, the Chern indices are

C1→4 C5 C6 C7 C8→11

0 +1 −1 +1 0

Our analytical results have been obtained in theN → ∞ limit. Although,N = 11 is
not very high, the numerical results which follow can well be interpreted in the semiclassical
description of this paper.

The minimum value ofN required to get correct semiclassical estimates can be evaluated
in the following manner: the mesh provided by Planck cells of magnitude 1/N has to be about
so fine that all phase space structures in a plot like figure 1 can be resolved.

Figure 9 shows the energy levelsEn(θ1, θ2) for n = 1→ 11, as a function ofθ2. The
dependence onθ1 gives a width of the levels, but is very weak and not visible in the figure.

In this energy spectrum, one can clearly distinguish two categories of energy levels. These
two categories are reproduced in figure 10, where we have artificially dropped the splittings.
This figure corresponds to the semiclassical spectrumσsc(θ2).

There are four energy levels (solid curves) which do not depend strongly onθ2 and have
periodicity 2π . In the light of proposition (2), these energy levels correspond to four quasi-
modes|ψ̃c(θ2)〉 localized on contractible trajectories. There is also one continuous energy
levelEnc(θ2) (dashed curves) which depends onθ2 and has periodicity 2πmwithm = 7. This
energy level corresponds to quasi-modes|ψ̃nc(θ2)〉 localized on noncontractible trajectories.
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Figure 9. Energy levelsEn(θ1, θ2) for n = 1→ 11, of
Hamiltonian equation (3), as a function ofθ2. There is no
degeneracy, but the small splittings are not visible. Points
A, B and C correspond to the Husimi representations of
figure 11.

Figure 10. The semiclassical spectrumσsc(θ2)

obtained from figure (9). The four solid curves
correspond to quasi-modes|ψ̃c(θ2)〉 localized on
contractible trajectories. The dashed curves correspond
to quasi-modes|ψ̃nc(θ2)〉 localized on noncontractible
trajectories.
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Figure 11. The dark density are the Husimi representation of eigenstates|ϕn(θ1, θ2)〉 for the band
n = 6 (see figure 9), withθ1 = 0, and three different values ofθ2. (A): θ2 = 0; (B): θ2 = 2, 5,
(C): θ2 = 4, 5. The dashed curves are the trajectories where the quasi-modes will jump at the next
crossing.

Figure 11 shows the Husimi representation (see appendix A) of eigenstates|ϕn(θ1, θ2)〉
for the leveln = 6, with θ1 = 0, and three different values ofθ2. These three eigenstates
correspond to the points A–C in figures 9 and 10. Looking at the classical trajectories in
figure 1, one can clearly associate these quasi-modes respectively with the trajectories:

(A) With a contractible trajectory (point D on figure 1),
(B) A noncontractible trajectory of type(0,+1),
(C) A noncontractible trajectory of type(0,−1).

As θ2 varies from 0 to 2π , the quantum state|ϕ6(θ1, θ2)〉 of level n = 6 jumps. From
figures 9 and 10 it is evident that there are three (avoided) level crossings, where the quasi-mode
jumps.

Figure 11 shows that for the first crossing from A to B the quasi-mode stays in the same
cell (1n1 = 0). For the second crossing from B to C the quasi-mode changes by1n1 = −1
cell. For the third crossing from C to A, the quasi-mode stays in the same cell (1n1 = 0).
This gives a total change of1n1 = −1 cell and a homotopyI6 = −1 for this sequence of
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Figure 12. The three possible band structures
(solid lines), made with a noncontractible
trajectory of type (0,±1) and a contractible
trajectory (c). The dashed lines are the upper
and lower bands.

quasi-modes. Accordingly, we haveC6 = I6 = −1. Our result, equation (22), is well verified
here.

7. The Chern indices of the spectrum in a generic situation

From the above results, we give here the precise values of Chern indices for a simple and
generic Hamiltonian (i.e. stable under perturbations) corresponding to the numerical example
equation (3) and explain how to read them from the Reeb graph (figure 2).

To simplify the discussion, we suppose in this section that we deal with a HamiltonianH

such that the curve representing the noncontractible trajectories in the Reeb graph, has only
one maximum and minimum, like the dashed curve in figure 2. We suppose, moreover, that
in the energy range of this curve, there is only one family of contractible trajectories, like the
solid curve CD in figure 2.

In the range of energy of the noncontractible trajectories, each band of the spectrum is
made with one of the three following sequences of quasi-modes, see figure 12:

• The band is made with the two noncontractible trajectories of type(0,±1). This gives
the sequence:S = (+−).
• The band has also a quasi-mode on the contractible trajectory(c). This gives two possible

sequences:S = (c +−) or S = (c − +).

To simplify the discussion, we exclude sequences as(c+c−)or(c−c+). (These sequences
do not appear if the energy intervals between successive energy levels of contractible quasi-
modes are large enough.)

It is clear from figure 12 that if the bandn has the sequenceSn = (c +−), then the band
n + 1 necessarily has the sequenceSn+1 = (c − +), and vice versa. These sequences always
come in pairs.

To illustrate this from our numerical example, we can see in figures 9 and 10 that the
bands 3–9 have, respectively, the sequences:S3 = (c + −), S4 = (c − +), S5 = (+−),
S6 = (c +−), S7 = (c − +), S8 = (+−), S9 = (+−).

Now we saw in proposition (3) that a nonzero Chern index results from the jumping of
neighbouring quasi-modes on the cylinder, via noncontractible trajectories. We also saw that
a given quasi-mode|ψ̃〉 jumps by tunnelling effect to the nearest quasi-mode of the same
energy located on a noncontractible trajectory. It is therefore important to determine in which
direction (right or left) this jump occurs: we have to complete the Reeb graph (figure 2), by
giving the direction of the shortest jump between any two trajectories. For that purpose, it is
sufficient to give the location of the separatrix between left and right jumps.

In figure 13, we have reproduced the Reeb graph (the solid curve), and we have drawn
(dashed curve and dotted curve) the possible location of this separatrix. The effect of this
separatrix (dashed curve) is shown with the plot of the jumps from one particular quasi-mode
|ψ̃〉 to a noncontractible trajectory of type(−1) at two different energies, on both sides of the
separatrix. The separatrix for the jump from/to a noncontractible of type(+1) is drawn with a
dotted curve.
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Figure 13. Example for the jumping of a quasi-mode|ψ̃〉
to the nearest noncontractible trajectory (of type(0,−1)).
The solid curve is the Reeb graph as in figure 2. The
dotted and dashed curves represent the separatrix for these
attraction basins.

Figure 14. From knowledge of the sequencesS5, S6, S8,
their homotopy and the Chern indicesC5 = +1,C6 = −1
and C8 = 0 are graphically computed.C5 = +1
is associated with a band of energyE1. Note that
C6 = −1 is nonzero thanks to the quasi-mode (A) on
the contractible trajectory (c) in regionR.

E1 is the energy where this separatrix crosses the noncontractible trajectory family. That
the energyE1 is the same for the dashed and dotted curves comes simply from the reciprocity
property of the tunnelling ‘geodesic’.

What matters, in fact, is only the intersection of this separatrix with the Reeb graph.
Figure 13 is qualitative here, but quantitative calculations of the tunnelling effect would
precisely determine the energy of these intersections.

Now, by combining figures 12 and 13 together with rule (22), it is easy to compute the
Chern index of the three kind of bands. This is done in figure 14 for the sequencesS5, S6, S8,
and we infer the general result:

• If E1 is in the range of a band of type(+−) then its Chern index isC(+−) = +1, otherwise
C(+−) = 0.
• If the trajectory(c) is in the regionR (of figure 13) thenC(c+−) = −1 (resp. +1), if the

band has energy greater thanE1 (resp. lower). In the other regions,C(c+−) = 0.
• If the trajectory(c) is in the regionR thenC(c−+) = +1 (resp.−1), if the band has energy

greater thanE1 (resp. lower). In the other regions,C(c−+) = 0.

This allows us to interpret the Chern indices of our numerical example: the bandS5 = (+−)
withC5 = +1 corresponds to the energyE1. Above it, the two bandsS6, S7 with Chern indices
C6 = −1, C7 = +1 form a pair, thanks to the presence of the contractible trajectory(c) in
regionR.

As a general result, we conclude that for any choice of HamiltonianH with a similar Reeb
graph, there is a unique band in the middle of the spectrum, including energyE1, with Chern
index +1. Above this energy (forE1 < E < E2), the Chern indices come in pairs(−1,+1),
and under the energyE1, the Chern indices come in pairs(+1,−1).

Of course, for another appearance of the Reeb graph, the rules could be different. In
particular, the Chern indices can reach higher values if the noncontractible curve of the Reeb
graph has more than one maximum. We do not know if there a simple and explicit expression
of the Chern indices in the general case.

8. Chern index and Hall conductivity

It is well known [1] that the Chern indexC of a band is related to the transverse integer quantum
Hall conductivityσxy by the relation equation (1). The usual demonstration of this formula
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starts from the Kubo linear response formula forσxy , and expresses it as the curvature integral
for C, equation (20). In this section we want to demonstrate it from another point of view, by
relatingC with the motion of a wavepacket on the planeTqp. This result seems more intuitive.

Consider a given energy bandn of the spectrum equation (11). For each(θ1, θ2) there
is one eigenvector|ϕn(θ1, θ2)〉 defined up to a multiplicative constant. Suppose that we have
a C∞ function (θ1, θ2) → |ψ(θ1, θ2)〉 ∈ HT (θ1, θ2), where|ψ(θ1, θ2)〉 is proportional to
|ϕn(θ1, θ2)〉, equation (11). Note that ifCn 6= 0, this function must be zero at some values of
(θ1, θ2).

Consider now

|ψ〉 =
∫ ∫

dθ1 dθ2|ψ(θ1, θ2)〉.

Then |ψ〉 ∈ HP = L2(R). We can say that|ψ〉 is a state ‘localized’ on the planeTqp
constructed from the bandn, like Wannier states in solid state physics. (Conversely, given
|8〉 ∈ L2(R), we can project it on the spectral bandn and obtain such|ψ〉.)

The state|ψ〉 can be translated by(n1, n2) cells on the plane by

|ψn1,n2〉 = T n1
Q T

n2
P |ψ〉 =

∫ ∫
dθ1 dθ2ein1θ1+in2θ2|ψ(θ1, θ2)〉.

Conversely,

|ψ(θ1, θ2)〉 =
∑

n1,n2∈Z2

e−in1θ1−in2θ2|ψn1,n2〉.

These simple relations can be generalized by the following result.
Consider another state constructed from the bandn:

|φ〉 =
∫ ∫

dθ1 dθ2eif (θ1,θ2)|ψ(θ1, θ2)〉 (23)

wheref is a continuous and periodic function such that

f (θ1 + 2π, θ2) = f (θ1, θ2) +N12π

f (θ1, θ2 + 2π) = f (θ1, θ2) +N22π

(N1, N2 ∈ Z2 are topological integers which characterized the homotopy of the functionf ).
Let us define

〈n1〉 =
∑
n1,n2

n1 · |〈ψn1,n2|φ〉|2

〈n2〉 =
∑
n1,n2

n2 · |〈ψn1,n2|φ〉|2

which give the mean position of the state|φ〉 on the planeTqp relatively to the localized states
|ψn1,n2〉. It is easy to prove that

〈n1〉 = N1

〈n2〉 = N2.

The mean position of|φ〉 is then ‘quantized’.
(This is a simple property of Fourier series: ifg(θ) = ∑

n cne
inθ = eif (θ) is periodic

andf (2π) = f (0) + N2π thenN = ∑
n n|cn|2. Another way to say it is:

∑
n n|cn|2 =

〈g|p̂θ |g〉 = 1
2π

∫ 2π
0 f ′ dθ = N , with the current operator̂pθ = 1

i d/dθ .)
We now give some consequences of this result on the ‘quantized mean position’.
Now let us first look at the time evolution of|ψ0,0〉:

|ψ(t)〉 = e−iHt/h̄|ψ0,0〉 =
∫ ∫

dθ1 dθ2e−iE(θ1,θ2)t/h̄|ψ(θ1, θ2)〉.
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In comparison with equation (23), the phase function is the dynamical phasef (θ1, θ2) =
−E(θ1, θ2)t/h̄ of homotopy typeN1 = N2 = 0 (because by continuous homotopyt → 0, f
is mapped to 0). This means that during its evolution, the quantum state|ψ(t)〉 spreads over
the plane, but its mean position〈n1〉, 〈n2〉 stays zero.

Let us suppose now thatθ1, θ2 are no more ‘good quantum numbers’, and that there is
a slow drift. In the model of bi-dimensional electrons of the introduction, this drift is the
adiabatic motion due to the low electrical fieldEx . Consider, for example,

θ1(t) = −ω1t

θ2(t) = θ2(0).

After one periodT = 2π/ω1, the evolution gives

e−iHT/h̄|ψ(θ1, θ2)〉 = exp(iφD(θ1, θ2) + iφB(θ2))|ψ(θ1, θ2)〉
whereφD(θ1, θ2) is the dynamical phase of homotopy typeN1 = N2 = 0 andφB(θ1, θ2) is the
Berry phase of the pathθ1(t) and does not depend onθ1 henceforth. By homotopy deformation,
φB(θ2) ≡ 2πCθ2 and is therefore of typeN1 = 0,N2 = C. This means that after one period
T , the mean position of the quantum state|ψ(t)〉 has been changed byδ〈n1〉 = 0, δ〈n2〉 = C
(in cells units).

This ‘quantized’ velocityV2 = δ〈n2〉/T is responsible for the integer Hall conductivity.
Indeed, in the Harper model [1] of noninteracting bi-dimensional(x, y) electrons in a bi-
periodic potential of period(X, Y ), and a perpendicular high magnetic fieldBz, with a low
electrical field alongEx , the adiabatic hypothesis gives

θ1(t) = −eX
h̄
Ext.

We have obtained that the quantized velocity of one-electron quantum state isVy = (CY )/T .
For a filled band, the electronic density is one electron per cell:ρ = 1/(XY). The electronic
density current of a filled band is thenjy = ρeVy = e2

h
C · Ex which leads to equation (1).

9. Conclusion

By using quasi-modes, we have obtained a semiclassical description of band eigenstates of a
generic quantum Hamiltonian on the torus phase space. By using general results exposed in
the appendices, relating the topological Chern index of a band, with the localization properties
of the quantum states, we have been able to express the Chern index of each band in terms of
the motion of the quasi-modes on the classical phase space.

In section 7, we have shown how the Chern indices of the whole spectrum can be
graphically computed from the classical Reeb graph. There is an interesting question which
can be raised from our work: conversely, from a given sequence(Cn)n of integers such that∑

n Cn = +1, the question would be to determine the potentialV (x, y) whose band spectrum
possesses this precise sequence of Chern indices.

Currently, one tries to observe experimental signatures of the Harper spectrum (Landau
level substructures) in superlattices with periods of about 100 nm on GA–As–AlGaAs
heterojunctions [27, 28]. In these experiments, the Chern index gives the quantum Hall
conductivityσxy . In this paper we have shown simple correspondances between the Chern
index and the classical trajectories of the electrons. These correspondances could be observed
in experiments by measuring the variations of the integer Hall conductivity, in relation with
the potentialV (x, y) of the supperlattice, which may be created by an external electrostatic
grid.
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Appendix A. Bargmann and Husimi representation

In this appendix, we recall well known results on Bargmann and Husimi representation on the
torus phase space [19].

We have seen previously that the spaceHT is not a subspace ofL2(R). For functions
belonging toHT , it will be more useful to introduce a phase space representation of the quantum
states, called the Bargmann representation [29].

Consider a quantum state|ψ〉 ∈ L2(R). In order to characterize the localization of|ψ〉 in
the phase space near the point(q, p), we first construct a Gaussian wavepacket|qp〉 (coherent
state) defined in thex-representation by

〈x|qp〉 =
(

1

πh̄

)1/4

exp

(
i

h̄
px

)
exp

(
− (x − q)

2

2h̄

)
.

The notation|qp〉 recalls that the coherent state is localized (in the semiclassical limit) at the
point (q, p) of the phase space.

The Husimi distribution of a state|ψ〉 is defined over the phase space by

hψ(q, p) = |〈qp|ψ〉|2
and forϕ ∈ L2(R), we have∫

|ϕ(x)|2 dx =
∫ ∫
|〈qp|ϕ〉|2 dq dp

2πh̄
. (24)

To characterize the functions ofL2(T ∗R) which are(q, p) representations of a state, it is
more convenient to introduce a complex-representation of the phase spacez = 1√

2h̄
(q + ip).

Another (proportional) expression of the coherent state is then

|z〉 = exp(za+)|0〉
with |0〉 being the fundamental of the harmonic oscillatorH0 = q̂2 + p̂2, anda+ being the
associated creation operator. Indeed:

|qp〉 = exp

(
i
qp

2h̄
− q

2 + p2

4h̄

)
|z〉.

The following anti-holomorphic function ofz is called the Bargmann distribution ofψ :

bψ(z) = 〈z|ψ〉.
Clearly, we have

hψ(q, p) = |bψ(z)|2e−
q2+p2

2h

hence the zeros of the functionhψ(q, p) are those of the holomorphic functionbψ(z), which
are localized zeros in the phase space. Moreover, (24) implies thatψ ∈ L2(R) if and only if
bψ ∈ L2(C, e−|z|2/h) andbψ is anti-holomorphic.

The same definitions can be applied for a state|ψ〉 ∈ HT (θ1, θ2). The corresponding
Bargmann function is a theta-function [30] and the Husimi distribution is bi-periodic in(q, p),
hence is well defined on the torusTqp.

We need the following properties concerning the Bargmann representationbψ(z) = 〈z|ψ〉
of a quantum state|ψ〉 on the torus (|z〉 is a coherent state on the torus [31].
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If |ψ〉 ∈ HT (θ1, θ2), the Bargmann functionbψ(z) is (a theta-function) anti-holomorphic
with respect toz, and withN zerosZ = (z1, . . . , zN) in the cell [0, 1] × [0, 1]. These zeros
are constrained by ( [30], this is the ‘Abel theorem’ and ‘Jacobi inversion theorem’, see [15]
p 235):

N∑
i=1

qi = θ2

2π

N∑
i=1

pi = θ1

2π

(25)

with zi = qi + ipi . Conversely, such a collection ofN zeros define a state|ψ〉 ∈ HT (θ1, θ2),
unique up to a multiplicative constant.

Note that since theN zeros are constrained to have a fixed sum, we get the right dimension
N − 1 + 1 for the Hilbert spaceHT (θ1, θ2).

Appendix B. Calculation of the Chern index in special cases

For simplicity, we will noteθ = (θ1, θ2) ∈ R2.
We will compute the Chern index of a line bundle in particular cases. We will always

consider a line sub-bundle ofHT (θ)→ Tθ . Such a line bundleF is characterized by giving
local sectionθ → |ψi(θ)〉 ∈ HT (θ) over open setsUi which coverTθ .

From appendix A, the line bundleF is also characterized by the functionθ → Z(θ),
whereZ(θ) is the set ofN nonordered zeros of the Bargmann functionsbψ(θ)(z).

B.1. Theorem on homotopy invariance

Theorem 1. Consider two complex line bundles overTθ with Chern indexC andC ′ defined
by local sections|ψi(θ)〉 and|ψ ′i (θ)〉 on open setsUi . Suppose, moreover, that

〈ψi(θ)|ψ ′i (θ)〉 6= 0 ∀θ ∀i
thenC = C ′.

Proof. We can suppose that the sections are normalized(〈ψi(θ)|ψi(θ)〉 = 1). On a setUi ,
and for a givenθ , define

ρi(θ) = |〈ψi(θ)|ψ ′i (θ)〉| 6 1

and for fixedλ ∈ [0, 1]:

|ϕi,λ(θ)〉 = |ψi(θ)〉 · 〈ψi(θ)|ψ ′i (θ)〉 + λ(|ψ ′i (θ)〉 − |ψi(θ)〉〈ψi(θ)|ψ ′i (θ)〉).
In the theorem, we suppose thatρi(θ)〉0. Thus

〈ψ ′i (θ)|ϕi,λ(θ)〉 = ρ2 + λ(1− ρ2)〉0
and then|ϕi,λ(θ)〉 6= 0.

We now check that the sections|ϕi,λ(θ)〉 define a complex line bundleFλ. On another
set Uj , if |ψj(θ)〉 = exp(iα)|̇ψi(θ)〉 and |ψ ′j (θ)〉 = exp(iβ)|̇ψ ′i (θ)〉 then |ϕj,λ(θ)〉 =
exp(iβ)|ϕi,λ(θ)〉 is in the same line as|ϕi,λ(θ)〉.

We have thus obtain a homotopic deformationFλ, λ ∈ [0, 1] between the line bundleF0

andF1. They have thus the same Chern indexC = Cλ = C ′. �



Topological properties of quantum periodic Hamiltonians 551

Theorem 2. More generally ([15] p 141) if we suppose that

θ → 〈ψi(θ)|ψ ′i (θ)〉
has zeros inθ∗ with indexι(θ∗) = ±1, then

C = C ′ +
∑

zerosθ∗
ι(θ∗). (26)

B.2. The Chern index from the zeros of the Bargmann function

Let F be a line bundle as above.

• Suppose that there exists some pointz0 ∈ Tqp of phase space, such that

∀θ ∈ Tθ bψ(θ)(z0) 6= 0

(equivalently, this means thatz0 /∈ Z(θ), for all θ ). Then we can select a vector
|ψ(θ)〉 ∈ HN(θ) in each fibre such that arg(bψ(θ)(z0)) = 0. This gives a nonvanishing
global section of the bundle. This is also a global frame, hence the bundle is trivial, and
C = 0.
• More generally, define

N(z0) = {θ ∈ Tθ/z0 ∈ Z(θ)}
then

C =
∑

θ∈N(z0)

(±1) (27)

where the sign±1 corresponds to the local orientation of the mappingzi at θ , where
Z = {z1, . . . , zN } andzi(θ) = z0. This can be deduced directly from equation (26), with
|ψ ′〉 = |z0〉.

B.3. Example of a line bundle with a given Chern indexC

We now construct explicit examples of such a bundle.

• Suppose thatN > 2. We define a line bundleF0, by specifying the zeros of the Bargmann
representation of a section, with the notation of equation (25):

q1 = θ2

2π
p1 = 0

q2 = 0 p2 = θ1

2π
qi = 0 pi = 0 for 36 i 6 N.

(28)

The constraint equation (25) is easily verified. If we choosez0 = (q0 + ip0) with
q0 = p0 = 0.5, z0 /∈ Z(θ) and from equation (27), we deduce that the bundleF0 is
trivial, with Chern indexC = 0.
• More generally, consider the bundleFC defined by

q1 = (1− C) θ1

2π
p1 = 0

q2 = C θ2

2π
p2 = θ1

2π
qi = 0 pi = 0 for 36 i 6 N.

The constraint (25) is verified. We can apply equation (27), to calculate the Chern index
C. The setN(z0) is given by

θ1 = π [2π ] θ2 = π

C
[2π/C]

and we obtain that the Chern index isC.
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B.4. Chern index for a moving coherent state

Theorem 3. SupposeN > 2. Consider the line bundleFz defined by the local section
|ψ(θ)〉 = |zθ 〉 ∈ HT (θ) with zθ = qθ + ipθ , and(

qθ
pθ

)
=
(
n11 n12

n21 n22

)(
θ1/2π
θ2/2π

)
. (29)

(This means that the coherent state|zθ 〉 is moving over the cells asθ is varying.)
The Chern index of this bundle is then

C = N ·
∣∣∣∣ n11 n12

n21 n22

∣∣∣∣ + n21 + n12. (30)

Proof. Consider the line bundleF0 defined by the zeros equation (28), with local section noted
|ϕi(θ)〉 on each open setUi ⊂ Tθ . This bundle hasC = 0 Chern index. Consider the function

f : θ → 〈ϕi(θ)|zθ 〉.
From equation (26), the Chern indexC of the bundleFz is

C =
∑

θ∗ zeros off
ι(θ∗).

The zeros off are given by

〈ϕi(θ)|zθ 〉 = 0⇔ zθ is a zero of the section|ϕi(θ)〉

⇔
{
qθ = qi
pθ = pi

i = 1, . . . , N

this gives 
n11

θ1

2π
+ n12

θ2

2π

n21
θ1

2π
+ n22

θ2

2π

=

θ2

2π
0

or =
 0
θ1

2π

or

=
{

0

0
for i = 3, . . . , N.

We deduce from equation (2) that

C =
∣∣∣∣ n11 n12− 1
n21 n22

∣∣∣∣ +

∣∣∣∣ n11 n12

n21− 1 n22

∣∣∣∣ + (N − 2)

∣∣∣∣ n11 n12

n21 n22

∣∣∣∣
= N

∣∣∣∣ n11 n12

n21 n22

∣∣∣∣ + n21 + n12.

�

B.5. Bundle constructed from periodic motion of states on the plane

A natural question is: is it possible to generalize theorem 3, for the periodic motion of arbitrary
states inL2(R) rather than only coherent states?

There is a first result, theorem 4, as follows.
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Theorem 4. LetS : θ → |ψ(θ)〉 ∈ L2(R) for θ ∈ R2 be an arbitrary mapping such that

∀θ |ψ(θ)〉 6= 0

|ψ(θ1 + 2π, θ2)〉 = T n11
Q T

n12
P |ψ(θ)〉

|ψ(θ1, θ2 + 2π)〉 = T n21
Q T

n22
P |ψ(θ)〉

(31)

with (n11, n12, n21, n22) ∈ Z4 which characterizes the periodic motion of the states|ψ(θ)〉 as
θ is varied.

For a contractible open subsetU of Tθ , define

|ψ̃(θ)〉 = Pθ1Pθ2(|ψ(θ)〉) ∈ HT (θ).
Then ifN > 3, and for a generic mapS, |ψ̃(θ)〉 gives a local section of a well defined line
bundle overTθ , which can be also notedS.

Proof. For everyθ , the line bundle is defined by the vector|ψ̃(θ)〉. We have therefore to check
that|ψ̃(θ)〉 6= 0, and that this line is periodic with respect toθ .

Because the spaceHT (θ) isN -dimensional, the condition|ψ̃(θ)〉 = 0 isN -dimensional.
As soon asN > 2, and forθ ∈ [0, 2π ]2 the condition|ψ̃(θ)〉 = 0 cannot be satisfied
generically. Now

|ψ̃(θ1 + 2π, θ2)〉 = Pθ1+2π (|ψ(θ1 + 2π)〉)
= Pθ1T

n11
Q T

n12
P |ψ(θ1)〉

= exp(in11θ1) exp(in12θ2)|ψ̃(θ)〉.
So|ψ̃(θ)〉and|ψ̃(θ1+a2π, θ2+b2π)〉are proportional and define the same line∀(a, b) ∈ Z2. �

Theorem 5. Suppose thatN > 4. Let S : θ → |ψ(θ)〉 ∈ L2(R) be a generic mapping as
defined in theorem 4. Then the Chern index of the line bundleS is given by formula (30).

Proof. We noteS0 = S, andS1 = Fz the line bundle defined in theorem 3. The proof
consists in constructing a homotopic deformationSλ from S0 to S1 for λ ∈ [0, 1]. Because the
Chern indexCλ of Sλ is constant, we therefore conclude that the Chern index ofS is given by
formula (30).

Forλ ∈ [0, 1], andθ ∈ R2, define

|ψλ(θ)〉 = λ|ψ(θ)〉 + (1− λ)|z(θ)〉 ∈ L2(R)

where|z(θ)〉 is a standard coherent state on the plane,z(θ) = qθ + ipθ , with qθ , pθ given by
equation (29). We suppose, moreover, that the phases are chosen such that equation (31) holds
for |z(θ)〉 and|ψ(θ)〉.

Then |ψλ(θ)〉 = 0 if and only if λ = 1
2 and |ψ(θ)〉 = −|z(θ)〉. This last situation is

nongeneric, and if it occurs, we can just choosez(θ) = (qθ + q0) + i(pθ + p0) with arbitrary
q0, p0 to avoid this. SoSλ : θ → |ψλ(θ)〉 ∈ L2(R) fulfils theorem 4, and defines a line bundle
for everyλ. Because there are three parametersθ1, θ2, λ we have to suppose now thatN > 4,
so that|ψ̃(θ)〉 6= 0. �



554 F Faure

B.6. Bundle constructed from a periodic motion on the cylinder

In section 4, we obtain the periodic motion of quasi-modes on the cylinderCqp phase-space.
A slightly different result than theorem 5 is then needed.

Theorem 6. SupposeN > 4, and let

θ2 ∈ R→ |ψC(θ2)〉 ∈ HC(θ2)

be a generic continuous mapping such that

∀θ2 ∈ R |ψC(θ2)〉 6= 0

|ψC(θ2 + 2π)〉 = T IQ|ψC(θ2)〉
with I ∈ Z.

For θ = (θ1, θ2) define

|ψ̃(θ)〉 = Pθ1|ψC(θ2)〉 ∈ HT (θ).
Thenθ → |ψ̃(θ)〉 ∈ HT (θ) is a local section of a well defined line bundle overTθ , with Chern
indexI .

Proof. The proof is similar to that of theorem 5.
The bundle is well defined because, first|ψ̃(θ)〉 = 0 needsN conditions, generically not

realized for arbitraryθ1, θ2 ∈ [0, 2π ], as soon asN > 2.
Secondly,|ψ̃(θ)〉 and|ψ̃(θ1 + a2π, θ2 + b2π)〉 = Pθ1T

Ib
Q |ψC(θ2)〉 = exp(iIbθ1)|ψ̃(θ)〉

are proportional and define therefore the same line.
In order to calculate the Chern index, consider the mapping

θ2 ∈ R→ |z(θ2)〉 ∈ L2(R)

where|z(θ2)〉 is a standard coherent state on the plane,z(θ2) = qθ + ipθ , and

qθ = I · θ2

pθ = p0 = constant.

We can therefore construct|z(θ2)C〉 = Pθ2|z(θ2)〉 ∈ HC(θ2) and|z(θ1, θ2)〉 = Pθ1|z(θ2)C〉 ∈
HT (θ).

From theorem 3,θ → |z(θ1, θ2)〉 define a line bundle with Chern indexn12 = I .
Consider now forλ ∈ [0, 1]

θ2→ |ψλ(θ2)〉 = λ|ψ(θ2)〉 + (1− λ)|z(θ2)C〉 ∈ HC(θ2)

and

Sλ : θ = (θ1, θ2)→ |ψ̃λ(θ)〉 = Pθ1|ψλ(θ2)〉 ∈ HT (θ).
Then for fixedλ, Sλ define a line bundle overTθ , because|ψ̃λ(θ)〉 = 0 nor |ψλ(θ)〉 = 0 are
generic (cf the discussion in the proof of theorem 5), and there is also periodicity with respect
to θ .

The mappingλ → Sλ is a homotopic deformation from the line bundleθ → |ψ̃(θ)〉 to
the line bundleθ → |z(θ1, θ2)〉. Their Chern index is constant and equal toI . �
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